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COUPLING BETWEEN RADIAL BETATRON AND 
SYNCHROTRON OSCILLATIONS 

by 

R. L. Gluckstem* and L. Smith 

I. Introduction 

There are several effects which arise from coupling between betatron and 

synchrotron oscillations. These can lead, In the presence of field bumps and 

gradient errors, to satellite stop bands near the in,tegral and half-integral 

tunes * The purpose of this note is to review some of the effects and to estimate 

their impor,tsnce for the NAL Booster and Main Ring. 

The coupling effects which wiil be considered here are: 

(a) coupling due to harmonics cf thz r-f accelerating force. 

('b) coupling due to the dependence of the betatron frequency on longitudinal 

momentum. (This effect has been obsemedl and analyzed*.) 

(c) coupling due to the longitudinai dependence of the transverse space 

charge defocussing force. (This Effect has been discussed by W6h13.) 

II. Coupling Due to Accelerating Field Harinonics 

A. Analysis 

The (cuupled) equations of motion for the linearized, smoothed radial 

betatron and synchrotron oscillations we (damping effects are neglected in 

this analysis): 

a*x 2 PoWoY - 
at2 + (“*-Y2)wo2x = h 4 (la) 
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ho 

0 dx 
-+-x=- 

heVcos$o 

at* r. 2nMy3r 2 
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The parameters are the usual ones4, with 

eV = maximum energy gain per turn 

w 
0 

= rotation frequency 

h = rf harmonic number 

th v = 
m 

relative smplitude of the -harmonic (arising from sum of h + ITI% 

and h - th spatial harmonic) 

For h ;F. m, one can write 

” 
m = $ ,i, CO6 me j 

where the sum is taken over the J r-f accelerating gaps (assumed for convenience 

to be syrmnetric about 0 = 5). 

It is possible to diagonalize the system of equations in (1) in the 

absence of v m, leading to the usual separation into betatron and synchrotron 

oscillations. The vr, term then represents a coupling of the two oscillations. 

Starting with the Lagrangian, 

fx ro2y3 .* 3 

+-$ + rOWOy 
wo2Y(v2-Y*) 

2h2 h ix- 2 x2 

eVcosOo (4-Q’ 
2nMn 2 Cl + vm cosmootl , 

one obtains the equatiofis of motion: 

(3) 

d2x 
-2 + v2x 

') 2y2 

de2 
B = v = * VmXB cosme (4) 

v -Y 

where x B and x 
+ 

are the radial displacements in the two modes, vs is the phase 
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and only terms of zero or first order in ev 
oscillation frequency, -have been 

MC2B2 
retained. 

These equations of motion show stop bands at: 

v = m - vs for v2 > y2 (below transition) 

and (5) 

v=m+LI s for y2 > v2 (above transition) ~ 

The total width of these stop bands is: 

u 312 

'"SB = v,'$l Y 
,"+ 

and the edfolding rate at the center of the bands is: 

(6) 

For the combination of signs opposite to those of (5), there is no stop- 

bad, but in either case there is a modulation of the amplitudes due to the 

coupling, even away from resonance. The peak amplitude may be estimated from 

the invariants formed from the Hamiltonian, 01 by using phase amplitude methods 

in (4), leading to: 

2 

6Ag 2, Cab) 

where 

Au= ~m-“+vs~ ~ (9) 

Here 6Ag and &A+ are the increases in radial amplitudes of the betatron and 

phase oscillations (maximum values of xB and x,). The amplitudes also satisfy 

the invariant 
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A+ = const. 

2040 
(10) 

The oscillation growths in Eq. (8) are proportional to vm, the relative 

amplitude of the _th spatial harmonic of the r-f, as defined in (2). Regular 

spacing and phasing of r-f cavities in azimuth may lead to the absence of par- 

ticular harmonics. Indeed, if it proves necessary to eliminate a troublesome 

harmonic, this may be done by appropriate choice of the azimuth of one or more 

r-f cavities. 

B. Numerical Values (taken from NAL Design Report, July 1968) 

1. Booster 

With vx = 6,7 

" = 0.08 
S 

y = 1.2 

Ill=7 

Av = 0.22 

v7 = 
cc,s 2100 + cos 315O + cos 420' + cos 525' = .31 

2 

we find: 

AvSB = 10 
-4 

6A+ = lO-3 AB 

&A6 = 3 x 10 
-4 

Am 

2. Main Ring 

With ux = 20.25 

" = 0,02 
S 

y = 10 

m = 20 

v .I 2 
m 

Av = 0,23 
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'we find: 

AV SB = 7 x 10 -4 

&A$ = 10 
-2 A6 

6A = 4 x 10 -5 
% Ad 

The effect of coupling due to harmonics of the accelerating field is clearly 

quite small. 

III. Coupling Due to Dependence of Betatron Frequency on Momentum 

A. Analysis for Field Bumps 

The coupled equations which contain a variation of betatron frequency 

with longitudinal momentum can also be derived from the Hamiltonian, provided 

one adds a term of the form x 
2 

% x$' 
Computation of the side bands then is 

governed 'by the effect of a field bump (or gradient error) in the presence of 

the coupling term. 

Although separate differential equations are obtained for x 
8 

and x 
+' 

the 

effect of x 
% 

on x 
e 

is negligible, so that the zero-order solution for x 
4 

may 

be used in the equation for x 
6’ 

The equation for x6 with a field bump is then: 

d2x 
--t x[v2 + 2vAv cos(vs8 + +)I = b cosm8 
de2 

(11) 

where Av is the amplitude of variation of betatron frequencies, vsB + $ is the 

phs.ve of the phase oscillation, and b is the amplitude of the _th Fourier 

comporlent of the field error. A similar equation applies to the vertical mo- 

tion, with the appropriate b and Av. 

As has been previously shown2, the solution for the homogeneous part of 

(11) for small F is: 
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+ ijd'd[v + Av cos(vs8 + $)] + i[ve + e sin(vs8 + ji)] 

x=e S =e 

m i i[(v + nvS)e + *] . 
= I: J,(Fje 

*z--m 8 

(12) 

One can form a Green's function and integrate (11). The amplitude of the closed 

orbit distortion then becomes 

J,(Av/~~) -in(vs8 + 11) 

m-v-nv ' 
S 

(13) 

If one value of n dominates, (13) becomes 

(14) 

Obviously for appropriate values of m, U, n, and us, the denominator in (14) 

may vanish, leading to an unacceptable growth in the oscillation amplitude. 

Howver, us changes during acceleration, and will not sit indefinitely on a 

resonance. 

For those values of n for which m-v-w6 does not vanish during accelera- 

tion, (14) may be used to estimate the closed orbit amplitude. For those 

values of n for which m-xi-n" s does vanish during acceleration, one can calcu- 

late the free oscillation amplitude induced fn passing through the resonance 

in terms of the rate of change of v at resonance.2 The result is: 
6 

a 2- ;” [Z+$]- 1’2 Jn(;j (15) 

where v 
S 

and dvs/dt are to be evaluated where m-u-n" vanishes. 
S 

The results in (14) and (15) can conveniently be expressed in terms of 

A m, the amplitude of the closed orbit distortion due to the -thharmonic of the 

error in the absence of coupling: 
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%'" '* ' (16) 

Thus, 

A 
<= ,::bs J@ 

and 

+ = 2~(m-~,[~"]-~"J~(~) 
m S 

(1-I) 

(18) 

It is instructive to examine (17) in the Xmit of small vs. For large 

argument, the Bessel function in (17) peaks at the order 

n ?i Av/v 
S 

after which it falls rapidly to zero as the order n increases. This implies 

the necessity for avoiding the range 

v=m+Av (19) 

which is the expected result for a "tune" which swings between v - Av and 

" + Au. This is the adiabatic result to which one is led by following the move- 

ment of the operating point during acceleration. 

For Av/vs of order 1 or less however, (17) and (18) may be appreciable 

for values of II as high as 3 oi- 4. The sidebands in this case may extend be- 

yond the limits in (24), thus more seriously restricting the extent to which 

the operating point may wander in vXa 

B. Numerical Examples 

In the main ring, vs is sufficiently small that expression (19) adequately 

describes the restriction on 'v. In the booster, however, the side-band effects 

could be significant- To give some idea of the numbers involved, we take as 

an example, 
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v 
x = 6.7, vz = 6.8 

ICI=7 

v = 0.08 s 
A A 

Table I gives the contributions to the non-resonant closed orbit deviation (F, *) 
x7 27 

for e range of Au. 

Table I 

iv 0 1 2 3 4 

0 1, 1 0, 0 030 030 090 

.02 .99, .99 -1.7, ,2a --- --- --- 

.04 .96, .96 .33, -55 .07, .16 --- --- 

.06 .93, .93 .47, .7a .14 , .33 .04, .04 m-m 

.0a .a7, .a7 .59, .9a -25, .59 -10, .lO .04, .Ol 

These numbers are not alarming in themselves, indicating at most .a factor 

of two in closed orbit amplitude for Au 21 0.1, which is considerably larger 

than anticipated in the design. However, the numbers are very sensitive to the 

choice of parameters, so that it would be advisable to plan on keeping the tunes 

at OP below 6.8 until u s is well below 0.08 and on controlling Au, by sextupole 

trimming, if necessary. As an indication of what can happen in passage through 
au 

resonence, we take Y = 6.8, n = 3, $ = 1, and $= 15 -' set (from the initial 
s 

slope in Fig. 9-a of the Design Report). Then, from equation (IS), 
f 

n, 2.5 

which should be doubled for the subsequent passage through resonance as vs de- 

creese8. That is to say, a coherent oscillation would be induced of amplitude 

five times that of the normal closed orbit deviation. Fortunately, for small x, 

Jn(x) s $4$, so that the effect decreases rapidly with decreasing Au and 

increasing n(= v m-v); again the solution would be to depress Au during the criti- 
S 

cal period. 
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C. Analysis for Gradient Errors 

The relevant equation is (11) with a right side proportional to x or z: 

d2x - 
de2 

+ x[v2 + 2vAv cos(vs0 + +)I = xk cos me (20) 

where k is the amplitude of the &harmonic of the gradient error. The 

analysis p.~~allels that leading to (13). In this cese one finds e fractional 

amplitude growth: 

J,W”/~*) 

F = k z m-23-n” 

-in(vs8 + $) 

e 
8 

For passage through e single resonance et v = (m - nAvs)/2 one obtains: 

g E rrk 2nn dvs -1'2 
A K[[;birl Jn(2Av/vs). 

(21) 

(22) 

It,is convenient to replace k by the stop-bend width it would produce et the 

nearest half-integer tune: 

ho=&. (23) 

Then (21) and (22) become, respectively, 

j& = $Ps~ , (for e single n) 

and 

2m dvs, F= "Ao[;- 
-l/2 

--3 
0 dt 

J*(F) . 
9 

(24) 

(25) 

Since A0 is expected to be Q 10 -2, the non-resonant beating effect (24). 

is quite small. Also, for Av 2 vs, (25) yields increases less serious than 

those of the preceding section. 
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IV. Coupling Due to Space Charge 

The presence of space charge adds to the complication in the coupling. We 

shell consider here the effect treated by M6h13 , which takes into account the 

variation of transverse frequency with longitudinal position in the bunch, due 

to the variation of the transverse force constant with longitudinal position. 

If one takes e parabolic variation in the force constant (corresponding 

roughly to e parabolic variation with azimuth of charge density), one obtains 

the equation, 

d2x -+ "*x + 2vAvsc(x - F);;l - 
de* 

b cosm0 

xk cosme 

(26) 

in the presence of field bumps or gradient errors. Here x is the average 

radial displacement of the bunch at & given longitudinal phase, 2$max is the 

phase length of the bunch, and Ause is the change in tune at the center of the 

bunch. 

It is not difficult to show that, if image forces are neglected, the field 

bump causes the beam to acquire a fixed orbit distortion coherently, end that 

the space charge term affects only the relative motion of the individual per- 

ticks, not their average. The gradient errors lead to no displacement of the 

bunch center, but to an increase in diameter if resonance occurs. An analysis 

similar to that of Orlov2 leads M?dhl to the result in (25) with the replace- 

ments 
2 

v -) " - Avsc(l - k, 

'$rn 

2 

Av + Av $1 - 
sc 2$ 2 m 

(Z) 
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where $1 is the amplitude of the synchrotron oscillation for the particular 

collection of particles being considered. One then obtains: 

dv 
6A-.*[.kL] 

-l/2 
-- 
A ow* at 

where the resonance occurs for 

t- " + Ausc(l - 
"1 

2 

--$ = nvs * 
2+ m 

(28) 

(29) 

In order to determine the order of magnitude of (28), we shall consider 

the extreme particles in the synchrotron oscillations of the booster ($, = 4,) 

and B value of Ausc = .2. The resonance condition then becomes, with m = 13, 

" = 6.7, 

nv =.l s 

which can occur for n = 1, V = 0.1 and/or n = 2, v = 0.05. 
s 

From (28), with 
s 

dvs T 15 set 
-1 , one finds 

(F) 
1 

= 150 A* 

(A) = 85 A 
* 2 0 

(30a) 

(30b) 

For Ao Q. 10 -2, (30) looks alarmingly large. Moreover, the booster para- 

meters are such that the beam would be right on the n = 2, us = 0.05 stop-band 

at injection, which would lead to & still larger figure. However, the driving 

force is so weak that non-linear effects cannot be neglected. If, for example, 

the charge distribution in the beam is taken to be parabolic in the transverse 

dimensions, rather than uniform, the resuiting cubic terms in the equations of 

motion would limit amplitude gra?Lhs TV something less than the envelope de- 
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fined by the largest amplitude oscillations. Furthermore, on the basis of 

linear theory, the widths of the satellite stop-bands are given by: 

AV 2 

An = AoJn(e 
$1 
--$ , 

s $rn 

(31) 

which are smaller than ho. Therefore, if the gradient errors can be trimmed 

out to the point where & low intensity beam can ride on half-integral tune, 

&s has been accomplished in existing machines, the satellite stop-bmds should 

not be troublesome. A more detailed study of these speculative remarks should 

probably be made. 
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